船舶与海洋工程系
电子邮件:li.h.chen@sjtu.edu.cn
通讯地址:WilliamHill中文官方网站木兰楼B617
2021 - williamhill威廉希尔官网 教授
2010 - 2011 美国密西根大学机械工程系 访问学者
2004 - WilliamHill中文官方网站机械与动力工程学院 副教授
1997 - 2000 WilliamHill中文官方网站机械工程系 工学博士
1994 - 1997 湖南大学机械工程系 工学硕士
1990 - 1994 湖南大学机械工程系 本科
智能绿色动力系统设计与控制,包括多能源混合动力系统、电力驱动系统、系统动态模型、随机特性概率模型、热耦合模型、机器学习模型、多目标优化设计、混合动力切换控制、能量管理、自适应控制、鲁棒控制等
应用领域:低碳船舶,新能源汽车,新能源飞机
研究生招生生源专业:机械、动力、控制、电子、电气、船舶与海洋工程、轮机工程等相关专业
欢迎报考硕士研究生、博士研究生,欢迎联系博士后研究岗位。
IEEE会员,SAE会员,国际控制联盟IFAC先进汽车控制技术委员会成员,国际汽车变速器及驱动技术会议技术委员会成员,中国造船工程学会轮机学术委员会成员,期刊审稿人(IEEE Transaction on Mechatronics, IEEE Transaction on Vehicular Technology, Control Engineering Practice等),《海洋工程装备与技术》编委
作为项目负责人,承担国家自然科学基金、科技部、工信部等国家、省部级科研项目50余项
期刊论文(英文):
J41. Zhuang Wang, Li Chen*, Lianzhong Huang, Kai Wang, Ranqi Ma, Bin Wang, A novel multivariable coupling optimization method of wind-assisted propulsion systems for a large crude carrier, Energy, 135720
J40. Jianyun Zhu, Li Chen*, Rui Miao. Stochastic optimization of onboard photovoltaic hybrid power system considering environmental uncertainties. Journal of Marine Science and·Engineering. 2024.12(8):1240
J39. Jianyun Zhu, Li Chen*, Rui Miao*, Optimization of sail-hybrid electric power system for ships considering correlated environmental uncertainties. Applied Energy, 391:125862, 2025
J38. Fengxiang Guo, Li Chen*. Imbalanced data-oriented probabilistic modeling for fuel consumption uncertainty of marine diesel engine during oceangoing voyages. Ocean Engineering, 2024, 119018
J37. Zhuang Wang, Li Chen*, Bin Wang, Tri-objective optimal design of a hybrid electric propulsion system for a polar mini-cruise ship. Ocean Engineering, 2024, 300: 117355
J36. Fengxiang Guo, Li Chen*. A Bayesian Probabilistic Approach for Quantifying Input-dependent Uncertainty in PMSM Efficiency Modeling. IEEE Transactions on Transportation Electrification, vol. 10, No. 4, December 2024
J35. Cheng Peng and Li Chen*. Robust Engine Slipping Start Control of Hybrid Electric Vehicles with Uncertainty in Clutch Slipping Torque and Change in Driver Demand Torque. Transactions of the Institute of Measurement and Control. 2024, 46 (16) , 3239-3256
J34. Cheng Peng, Li Chen*, Dongxiao Miao, Shenglai Fu, Non-Square Internal Model Control for Mode Transition of Hybrid Electric Vehicles with Multiple Time Delays, Proceedings of the Institution of Mechanical Engineers Part D- Journal of Automobile Engineering, 2024, DOI 10.1177/09544070241235719
J33. Cheng Peng, Li Chen*, Shenglai Fu, Disturbance Observer of Clutch Slipping Torque for Multi-Mode Hybrid Electric Vehicles, Journal of Shanghai Jiao Tong University. (Science.), 2024. DOI 10.1007/s12204-024-2702-7
J32. Zhuang Wang, Li Chen*, Bin Wang, Lianzhong Huang, Kai Wang, Ranqi Ma, Integrated optimization of speed schedule and energy management for a hybrid electric cruise ship considering environmental factors, Energy, 2023, 282: 128795
J31. Jianyun Zhu, Li Chen*, A probabilistic multi-objective design method of sail-photovoltaic-hybrid power system for an unmanned ocean surveillance trimaran, Applied Energy, 2023:121604
J30. WANG Wenyang, CHEN Li*, LIANG Xiaofeng, Bi-objective optimization for a plug-in PV/battery system of an unmanned patrol boat, Part M: Journal of Engineering for the Maritime Environment, 2022 237:3, 700-716
J29. Cheng Peng, Li Chen*, Model Reference Adaptive Control Based on Adjustable Reference Model during Mode Transition for Hybrid Electric Vehicles, Mechatronics,87(2022), 102894,(DOI 10.1016/ j.mechatronics.2022.102894)
J28. Yongchun Jin, Li Chen*, Cheng Cheng, Thermal behavior of friction discs in dry clutches based on a non-uniform pressure model, Case Studies in Thermal Engineering, 32(2022), 101895
J27. Zhao Ding, Li Chen*, Jun Chen, Xiaoxuan Cheng, Chengliang Yin, Scheduling Period Selection Based on Stability Analysis for Engagement Control Task of Automatic Clutches,Applied Sciences, 11(2021), 8636. https://doi.org/10.3390/app11188636
J26. Haohan Yang, Wentong Liu, Li Chen, Fan Yu*, An Adaptive Hierarchical Control Approach of Vehicle Handling Stability Improvement Based on Steer-by-Wire Systems,Mechatronics, 73(2021), 102583
J25. Zhao Ding, Li Chen*, Dongxiao Miao, Decoupling Internal Model Control for the Robust Engagement of Clutches, Mechatronics, 73(2021), 102466
J24. Jianyun Zhu, Li Chen*, Xuefeng Wang, Long Yu. Bi-level optimal sizing and energy management of hybrid electric propulsion systems, Applied Energy, 2020, 260 (114134):1-15
J23. Jianyun Zhu, Li Chen*, Lijuan Xia, Bin Wang. Bi-objective optimal design of plug-in hybrid electric propulsion system for ships. Energy, 177 (2019) 247-261
J22. Jianyun Zhu, Li Chen*, Bin Wang, Lijuan Xia, Optimal design of a hybrid electric propulsive system for an anchor handling tug supply vessel, Applied Energy, 2018,226:423-436
J21. Liu Fengyu, Chen Li*, Yin Chengliang, et al. Improved Clutch Slip Control for Automated Transmissions, IMechE, Part C: Journal of Mechanical Engineering Science, 2018, 232(18) 3181–3199
J20. Liu Fengyu, Chen Li*, Yao Jian, et al. Design, Modeling and Analysis of Wedge-based Actuator with Application to Clutch-to-Clutch Shift, Proc. IMechE, Part D: Journal of Automobile Engineering, 2018, 232(9) 1149–1166
J19. Liu Fengyu, Chen Li*, Yin Chengliang, et al. Stability Analysis of a Force-aided Lever Actuation System for Dry Clutches with Negative Stiffness Element , Journal of Shanghai Jiao Tong University, 2018, 23(2): 218–226
J18. Liu Fengyu, Chen Li*, Yin Chengliang, et al. Modeling and Simulation Study of a Novel Electro-Mechanical Clutch Actuation System, Advances in Mechanical Engineering, 2017, 9(8):168781401772040 (DOI: 10.1177/1687814017720404)
J17. Liu Fengyu, Chen Li*, Yin Chengliang , et al. Modeling and Experimental Validation of Lever-based Electromechanical Actuator for Dry Clutches, Advances in Mechanical Engineering, 2017, 9(8):168781401771519 (DOI: 10.1177/1687814017715196 )
J16. Li Chen*, Jian Yao, Chengliang Yin. Design, Modeling and Validation of Clutch-to- Clutch Shift Actuator Using Dual-Wedge Mechanism, Mechatronics, 2017(42):81-95
J15. Li Chen*, Gang Xi. Stability and Response of a Self-amplified Braking System under Velocity-dependent Actuation Force, Nonlinear Dynamics, 2014, 78(4):2459-2477
J14. Jian Yao, Li Chen*, Chengliang Yin. Modeling and Stability Analysis of Wedge Clutch System, Mathematical Problems in Engineering, 2014, Article ID 712472, 12 pages, doi:10.1155/2014/712472
J13. J. Yao, L. Chen*, F. Liu, C. Yin. Experimental Study on Shift Quality Improvement for Automatic Transmission Using Motor Driven Wedge Clutch, Proceedings of the Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering, 2014, 228(6):663–673
J12. Futang Zhu, Li Chen*, Chengliang Yin, Jie Shu. Dynamic modeling and systematic control during mode transition for a multi-mode hybrid electric vehicle, Proceedings of the Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering, 2013, 227(7):1007-1023
J11. Futang Zhu, Li Chen*, Chengliang Yin. Design and analysis of a novel multi-mode transmission for a HEV using a single electric machine, IEEE Transactions on Vehicular Technology, 2013, 62(3):1097-1110
J10. Li Chen*, Gang Xi, Jing Sun. Torque Coordination Control During Mode Transition for a Series–Parallel Hybrid Electric Vehicle, IEEE Transactions on Vehicular Technology, 2012, 61(7):2936-2949
J9. Yao Jian, Chen Li*, Liu Fengyu, Yin Chengliang, Lee Chunhao, Dong Yu, Huang Ying, and Kao Chi-Kuan. Experimental and control study of slipping decay time of a wedge clutch in an automatic transmission. DSCC 2012-MOVIC 2012, v1, p151-156, 2012.
J8. Chen Li*, Xi Gang, Yin Chengliang. Model referenced adaptive control to compensate slip-stick transition during clutch engagement. International Journal of Automotive Technology, 2011, 12(6): 913-920.
J7. Shu Jie, Chen Li, Yao Jian, Yin Chengliang. Application of switching traction and braking systems in longitudinal control for series–parallel hybrid electric buses. International Journal of Vehicle Design, 2011, 56(4):299–316.
J6. Li Chen*, Futang Zhu, Minmin Zhang, Yi Huo, Chengliang Yin, Huei Peng, Design and Analysis of an Electrical Variable Transmission for a Series-Parallel Hybrid Electric Vehicle. IEEE Transactions on Vehicular Technology, 2011, 60(5):2354-2363
J5. Dong Yue-hang, Yin Cheng-liang, Chen Li, Zhang Jian-wu, Optimal Torque Control Strategy of Electric Transmission Driver Based on AMT During Gear Shift , Journal of Shanghai Jiao Tong University (English Edition), Vol. 2, 2009
J4. Chen Deling and Chen Li* and Yin Chengliang and Zhang Yong, Active front steering during braking process, Chinese Journal of Mechanical Engineering(English Edition), 2008, 2(4):64-70
J3. Zhang Peizhi, Yin Chengliang, Zhang Jianwu, Chen Li, Integral power management strategy for a complex hybrid electric vehicle – catering for the failure of an individual component, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222(5):719-727
J2. Zhang Jianwu, Chen Li, Xi Gang, The System dynamics modeling and adaptive optimal control for automatic clutch engagements of vehicles, IMechE J. Automobile Engineering, Part D., 2002, 216(12):983-991
J1. Li Chen, Jianwu Zhang, Weigang Huang, Feedback linearization control for electronically controllable clutch of vehicle, Chinese Journal of Mechanical Engineering (English Edition), 1999, 12(4):303-311
期刊论文(中文):
JC38、雍久钦,薛镇涛,陈俐*,海况对无人船直航循迹精度与控制耗能的影响研究,海洋工程装备与技术,2024 ,11 (04)
JC37、倪未希,刘宇阳,陈俐*,散热工况下永磁同步电机转子温度的卷积神经网络预测,电机与控制学报,2025 ,29 (01)
JC36、陈瑞,陈俐*,考虑未来功率需求的锂离子电池SOC多步预测,电源技术,2024 ,48 (10)
JC35、彭程,陈俐*,傅圣来,基于离合器滑摩扭矩估计的并联式气电混合动力船舶模式切换控制,中国机械工程,2024 ,35 (08)
JC34、傅圣来,陈俐*,陈自强,考虑不确定延迟的并联式气电混合动力系统模式切换控制,WilliamHill中文官方网站学报,2024,10.16183/j.cnki.jsjtu.2023.473
JC33、林浩安,陈俐*,面向偏航最小的风帆助航船攻角优化策略研究,海洋工程装备与技术,2024 ,11 (01)
JC32、彭程,陈俐*,混合动力车辆滑摩起动离合器扭矩实时估计方法,机械工程学报,2025-02-12
JC31、孟治金,刘宇阳,陈俐*,基于迭代式粒子群优化的永磁同步电机热网络模型参数辨识研究,电机与控制学报,2024,28(01): 1-11
JC30、周寅正 陈俐*,基于模型预测控制的双主机混合动力船舶能量管理研究,中国舰船研究,2024,19(s1)
JC28、褚玥,陈俐*,管聪,船舶氢电混合动力系统建模与全生命周期碳排放评价,中国舰船研究,2024-01-08 (DOI: 10.19693/j.issn.1673-3185.03354)
JC27、苗东晓, 陈俐*, 王欣然. 基于 NSGA-II 优化的船舶串联式混合动力系统能量管理策略[J]. 舰船科学技术, 2022, 44(14): 113-118q
JC26、王文扬,陈俐*,梁晓锋,基于改进滑模观测器的内置式永磁同步电机位置速度估计方法,机械设计与研究,2022,38(03): 216-221
JC25、靳永春,陈俐*,邹宇晟,段诚武,姚健,永磁同步驱动电机温度场研究进展综述,电气传动,2023,53(01): 28-38
JC24、王子垚,郭凤详,陈俐*,基于外推高斯过程回归方法的发动机排放预测,WilliamHill中文官方网站学报,2022,56(5):604-610
JC23、杜文龙,郭凤祥,陈俐*,破冰船柴电混合动力系统优化设计及敏感性分析,中国舰船研究,2021, 16(5): 127–136
JC22、杜文龙,陈俐*,刘文通,陈峻,考虑延迟的线控转向二自由度内模控制,中国机械工程,2021, 32(16):1904-1911,1920
JC21、刘文通,陈俐*,陈峻,考虑延迟的线控转向系统自适应内模控制,WilliamHill中文官方网站学报, 2021, (10): 1210 -1218
JC20、罗建南,朱光钰,杨浩瀚,喻凡,陈俐*,线控转向系统的前轮转角跟踪策略研究,机械工程学报,2020,55(22):
JC19、张明远,陈俐*,考虑膜片弹簧非线性的干式离合器位置闭环控制,汽车工程,2020,42(7):894-908
JC18、陈昊闻,陈俐*,刘峰宇,双离合器自动变速器换挡过程的内模控制,汽车工程,2020,42(4):477-483
JC17、刘强,陈俐*,含时滞反馈的楔式制动系统动力学分析,应用力学学报,2020,37(2):486-493
JC16、程小宣,陈俐*,基于稳定性分析的电控离合器任务调度周期设计,WilliamHill中文官方网站学报,2019,53(04):56-64
JC15、陈俐*,李雄,程小宣,罗来军,喻凡,汽车线控转向系统研究进展综述,汽车技术,2018(4):23-34
JC14、张益敏,陈俐*,朱剑昀,混合动力船舶动力装置及能量管理研究综述,舰船科学技术,2018,40(3):1-7
JC13、郑鹏飞,房成亮,陈俐*,干式DCT主离合器的二参数温混合动力船舶动力装置及能量管理研究综述度模型研究,汽车工程,2018,40(6):706-712)
JC12、朱剑昀 陈俐* 彭程,混合动力船舶模式切换过程力矩协调控制研究,中国机械工程,2017,28(23):2859-2867
JC11、彭程,朱剑昀,陈俐*,基于模型参考控制的混合动力模式切换研究,WilliamHill中文官方网站学报, 2017, 51(10): 1196-1201
JC10、房成亮, 陈俐*, 刘峰宇,干式DCT主离合器的有限元传热模型与实验验证[J]. 传动技术, 2016, 30(4):3-8
JC9、姚健,陈俐*,刘峰宇,基于增益自调整PID的楔形离合器换挡性能优化控制,汽车技术,2015,7:10-15
JC8、余孟轲,姚健,陈俐*,楔形离合器系统的正压力观测[J]。汽车技术,2014,4:10-13
JC7、朱福堂, 陈俐*, 殷承良. 采用多模式变速器单电机混合电动汽车的分析与仿真. 汽车安全与节能学报, 2012,3(3):265-275
JC6、陈俐*,王昊松,习纲,基于稳定性分析的离合器接合过程抖振机理与控制研究,系统仿真学报,2011,23(7): 1451-1458
JC5、朱福堂, 陈俐*, 殷承良,唐林,"混合动力汽车行星齿轮机构的方案设计与优选." 中国机械工程,2010,(001): 104-109
JC4、张敏敏, 陈俐*, 霍易,谢先平,路顺,高速电磁开关阀非线性模型简化与验证,WilliamHill中文官方网站学报,2010,44(7): 1005-1009.
JC3、陈俐*,习纲,罗来军,殷承良,基于参考模型自适应控制提高自动离合器接合品质,系统仿真学报,2009,21(16):5102-5104
JC2、陈俐*,殷承良,基于混合定时调度的车辆AMT控制系统的实时性分析,WilliamHill中文官方网站学报,2007,41(1):256-261
JC1、陈俐*,张建武,基于局部非抢占式定时调度的汽油机控制系统实时性分析,WilliamHill中文官方网站学报,2006,40(1):167-171
会议论文:
C39. Optimization of PV-hybrid power system considering environmental uncertainties. The 32nd International Ocean and Polar Engineering Conference, June 5-10, 2022
C38. GPR for quantifying uncertainty in modeling of motor efficiency map for electric ships. The 32nd International Ocean and Polar Engineering Conference, June 5-10, 2022
C37. A Novel Energy Management Strategy for Hybrid Electric Polar Cruise, The 32nd International Ocean and Polar Engineering Conference, June 5-10, 2022
C36. Optimal Design of Hybrid Electric Propulsive System for A Mini Polar Cruise, 31th International Ocean and Polar Engineering Conference – Rodos, Greece. Online/Virtual Conference, June 20-25, 2021
C35. Bi-objective optimization of diesel/battery hybrid electric propulsion system for polar icebreaker. 31th International Ocean and Polar Engineering Conference – Rodos, Greece. Online/Virtual Conference, June 20-25, 2021
C34. 基于高斯过程机器学习的发动机排放预测方法, 2021中国汽车工程学会年会暨展览会( China SAE Congress & Exhibition,(SAECCE)),上海,2021年10月19-21日
C33. 极地破冰船柴电混合动力系统优化设计及参数敏感性分析,第四届高新船舶与深海开发装备创新论坛,2020年10月
C32. Transient thermal behavior of dry clutch under non-uniform pressure condition, SAE2020-01-1418
C31. Internal Model Control During Mode Transition Subject To Time Delay For Hybrid Electric Vehicles, SAE2020-01-0961
C30. Optimization of PV-hybrid electric propulsion system with environment uncertainty. 30th International Ocean and Polar Engineering Conference (ISOPE 2020), Shanghai, China, 2020-10-12至2020-10-16
C29. Optimal Sizing of Sail-assisted PV/Shore Power Hybrid Propulsion Systems, 30th International Ocean and Polar Engineering Conference (ISOPE 2020), Shanghai, China, 2020-10-12至2020-10-16
C28. Four-parameter real-time thermal model for dry DCTs, Proceedings of China SAE Congress 2019, selected papers
C27. Four-parameter Real-time Thermal Model for Dry DCTs, 2019 China SAE Congress & Exhibition (SAECCE), Shanghai, China, October 22 th -24th, 2019
C26. Internal Model Control for Robust Engagement of Clutches, 2019 IEEE 3rd Conference on Control Technology and Applications, August 19-21, 2019, City University of Hong Kong, China
C25. Multi-objective optimal design of a plug-in hybrid electric propulsion system for a catamaran, 29th International Ocean and Polar Engineering Conference (ISOPE 2019), Honolulu, Hawaii, USA, June 16-21, 2019
C24. Analytical Study on Dynamics of Wedge Braking Systems with Time Delay[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Institute of Noise Control Engineering, 2019, 259(4): 5627-5638
C23. Model Reference Control during Mode Transition for a Single-Motor Hybrid Electric Vehicle, 14TH International Symposium on Advanced Vehicle Control, 2018, Beijing, China
C22. Model Reference Adaptive Control during Mode Transition of a Parallel Hybrid Electric Vehicle, PROCEEDINGS OF THE AMERICAN CONTROL CONFERENCE, 2018:92-97, June 27-29, Milwaukee, USA
C21. LQ Control during Clutch Engagement for Automatic Transmissions, PROCEEDINGS OF THE AMERICAN CONTROL CONFERENCE, 2018:490-495, June 27-29, Milwaukee, USA
C20. A multi-objective optimization method for hybrid electric propulsion system, Proceedings of the International Offshore and Polar Engineering Conference, 2018:664-671, June 10-15, Sapporo, Japan
C19. Influence of calculation interval on engagement quality of electronically controlled clutches. Proceedings of the ASME 2017 Dynamic Systems and Control Conference (DSCC2017), October 11-13, 2017, Tysons, Virginia, USA. DSCC2017-5272
C18. A New Rotating Wedge Clutch Actuation System. SAE 2017
C17. Dynamical behaviors of an electromechanical actuator with nonlinear stiffness load in dry clutches. 46th 46th International Congress and Exposition on Noise Control Engineering, August 27-30, 2017, Hongkong
C16. Stability Analysis of Motor-Driven Actuators in Dry Clutches with Nonlinear Stiffness Element. 2017 American Control Conference, May 24-26, 2017, Seattle, Washington, USA
C15. Self-tuning PID design for slip control of wedge clutches, SAE 2017-01-1112
C14. A New Clutch Actuation System for dry DCT, SAE 2015-01-1118
C13. A Brief Analysis of Factors Influencing the Efficiency of THS, 6th Transmission and Motor Driving Technology Conference, 2014.4.19-21, Beijing, China
C12. Normal Force Observation of the Wedge Clutch System, 6th Transmission and Motor Driving Technology Conference, 2014.4.19-21, Beijing, China
C11. Model Reference Control to Reduce both the Jerk and Frictional Loss during DCT Gear Shifting, 2013 American Control Conference, June 17-June 19, 2013, Washington, DC, USA
C10. Study on DCT temperature field under vehicle creeping, 5th Transmission and Motor Driving Technology Conference, 2013.4.19-21,Suzhou, China, Best Paper Award
C9. Control Oriented Universal Format Model for Planetary Gear Transmission, 5th Transmission and Motor Driving Technology Conference, 2013.4.19-21,Suzhou China
C8. Experimental Validation of a Wedge Clutch in Automatic Transmissions. International Conference on Advanced Vehicle Technologies and Integration,Changchun, 2012.7.16-19,Best Student Paper Award
C7. Torque coordination of clutch, engine and motor during power transition for a hybrid electric bus, IEEE 7th Vehicle Power and Propulsion Conference, Chicago, USA, 2011.9.6-9
C5. Modeling of a Wedge Clutch in an Automatic Transmission. 2010, SAE paper: 01-0186
C4. Architecture Design and Performance Analysis of a Novel Electrical Variable Transmission for a Hybrid Car. 10th International Symposium on Advanced Vehicle Control, August 22-26, 2010, Loughborough, UK
C3. Robust scheduler design for automatic mechanical transmission real-time control, SAE Paper 2006-01-1490
C2. Real-time Analysis for electronically controller Unit of vehicle automatic mechanical transmission, SAE Paper 2005-01-3589
C1. WCET Analysis for engine control, IEEE International Conference on Mechatronics and Automation, ICMA 2005, 2005, p 2090-2095
本科生课程:绿色船舶动力系统(1)
研究生课程:动力系统建模与仿真
美国发明专利3项,中国发明专利10余项
2021,第十届全国海洋航行器设计与制作大赛,三等奖,指导的作品名称““黑鲨号”水下机器人”
2020,第九届全国海洋航行器设计与制作竞赛,一等奖,指导的作品名称“仿生海龟水陆两栖机器人”
2020,第九届全国海洋航行器设计与制作竞赛,一等奖,指导的作品名称“思源号水下机器人”
2013, Best Paper Award, Longsheng Cai, Li Chen, Study on DCT temperature field under vehicle creeping, 5th Transmission and Motor Driving Technology Conference, 2013.4.19-21,Suzhou, China;
2012, Best Student Paper Award, J. Yao, L. Chen*, F. Liu, C. Yin, C. J. Lee, Y. Dong, Y. Huang, C. Kao, and F. Samie. Experimental Validation of a Wedge Clutch in Automatic Transmissions. International Conference on Advanced Vehicle Technologies and Integration,Changchun, 2012.7.16-19
聘期考核优秀(2015,2018,2021)
2019,WilliamHill中文官方网站教学成果特等奖(排名第三)
2016,WilliamHill中文官方网站优秀教师三等奖
2014,上海市科技进步二等奖
2008,晨星计划教师;
研究生课程“动力系统建模与仿真”入选首届WilliamHill中文官方网站研究生精品课程
3 Optimal design of a hybrid electric propulsive system for an anchor handling.pdf
2 Bi-objective optimal design.pdf
5 Design and Analysis of an Electrical Variable Transmission.pdf
6 Stability and response of a self-amplified braking system.pdf
4 Design and validation of clutch-to-clutch shift actuator.pdf
7 Torque Coordination Control During.pdf